В отличии от систем Автоматизированного перевода, системы Машинного Перевода производят перевод текстов в автоматическом режиме без участия человека.
Формы организации взаимодействия ЭВМ и человека при машинном переводе
* С постредактированием: исходный текст перерабатывается машиной, а человек-редактор исправляет результат.
* С предредактированием: человек приспосабливает текст к обработке машиной (устраняет возможные неоднозначные прочтения, упрощает и размечает текст), после чего начинается программная обработка.
* С интерредактированием: человек вмешивается в работу системы перевода, разрешая трудные случаи.
* Смешанные системы (например, одновременно с пред- и постредактированием).
* Частично автоматизированный перевод: например, использование переводчиком-человеком компьютерных словарей.
* Системы с разделением труда: компьютер обучен переводить только фразы жёстко заданной структуры (но делает это так, чтобы исправлять за ним не требовалось), а всё не уложившееся в схему отдает человеку.
В англоязычной терминологии различаются термины machine translation (MT, полностью автоматический перевод) и machine-aided или machine-assisted translation (MAT, автоматизированный перевод); если же надо обозначить и то, и другое, пишут M(A)T.
История машинного перевода
Мысль использовать ЭВМ для перевода была высказана в 1946 году, сразу после появления первых ЭВМ. Первая публичная демонстрация машинного перевода (так называемый Джорджтаунский эксперимент) состоялась в 1954 году. Несмотря на примитивность той системы (словарь в 150 слов, грамматика из 6 правил, перевод нескольких простых фраз), этот эксперимент получил широкий резонанс: начались исследования в Англии, Болгарии, ГДР, Италии, Китае, Франции, ФРГ, Японии и других странах; в том же 1954 году и в СССР.
К середине 1960-х в США для практического использования были предоставлены две системы русско-английского перевода:
* MARK (в Департаменте иностранной техники ВВС США);
* GAT (разработка Джорджтаунского университета, использовалась в Национальной лаборатории атомной энергии в Окридже и в центре Евратома в г. Испра, Италия).
Однако созданная для оценки подобных систем комиссия ALPAC пришла к выводу, что в силу низкого качества машинно переведённых текстов эта деятельность в условиях США нерентабельна. Хотя комиссия рекомендовала продолжать и углублять теоретические разработки, в целом её выводы привели к росту пессимизма, снижению финансирования, часто к полному прекращению работ по этой тематике.
Тем не менее, в ряде стран исследования продолжались, чему способствовал постоянный прогресс вычислительной техники. Особенно существенным фактором стало появление мини- и персональных компьютеров, а с ними всё более сложных словарных, поисковых и т. п. систем, ориентированных на работу с естественноязыковыми данными. Росла и необходимость в переводе как таковом ввиду роста международных связей. Все это привело к новому подъёму этой области, наступившему примерно с середины 1970-х. В 1980-е наступило время широкого практического использования переводческих систем, сложился рынок коммерческих разработок по этой теме.
Впрочем, мечты, с которыми род людской взялся полвека назад за задачу машинного перевода, в значительной мере остаются мечтами: высококачественный перевод текстов широкой тематики по-прежнему недостижим. Однако несомненным является ускорение работы переводчика при использовании систем машинного перевода: по оценкам конца 1980-х, до пяти раз.
В настоящее время существует множество коммерческих проектов машинного перевода. Одним из пионеров в области машинного перевода была компания Systran. В России большой вклад в развитие машинного перевода внесла группа под руководством проф. Р. Г. Пиотровского (Российский государственный педагогический университет им. Герцена, Санкт-Петербург).
Качество перевода
Качество перевода зависит от тематики и стиля исходного текста. Машинный перевод художественных текстов практически всегда оказывается неудовлетворительного качества. Тем не менее для технических документов при наличии специализированных машинных словарей и некоторой настройке системы на особенности того или иного типа текстов возможно получение перевода приемлемого качества, который нуждается лишь в небольшой редакторской корректировке. Чем более формализован стиль исходного документа, тем большего качества перевода можно ожидать. Самых лучших результатов при использовании машинного перевода можно достичь для текстов, написанных в техническом (различные описания и руководства) и официально-деловом стиле.
Применение машинного перевода без настройки на тематику (или с намеренно неверной настройкой) служит предметом многочисленных бродящих по Интернету шуток. Из пространных примеров наиболее известен текст «Гуртовщики Мыши» (перевод компьютерной документации программой Poliglossum на основе медицинского, коммерческого и юридического словарей); из кратких — фраза «My cat has given birth to four kittens, two yellow, one white and one black», которую программа ПРОМТ превращает в «Мой кот родил четырёх котят, два жёлтых цвета, одно белое и одного афроамериканца».
Чаще всего подобные шутки связаны с тем, что программа не распознаёт контекст фразы и переводит термины дословно, к тому же не отличая собственных имён от обычных слов. Та же программа ПРОМТ превращает «bra-ket notation» в «примечание Кети лифчика», «Lie algebra» — в «алгебру Лжи», «eccentricity vector» — в «вектор оригинальности» и т. п.
Новые комментарии
15 лет 4 недели назад
15 лет 6 недель назад
15 лет 47 недель назад
16 лет 2 недели назад
16 лет 2 недели назад
16 лет 34 недели назад
16 лет 44 недели назад